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Abstract
Intel’s Software Guard Extensions (SGX) provide a non-

introspectable trusted execution environment (TEE) to protect
security-critical code from a potentially malicious OS. This
protection can only be effective if the individual enclaves are se-
cure, which is already challenging in regular software, and this
becomes even more difficult for enclaves as the entire environ-
ment is potentially malicious. As such, many enclaves expose
common vulnerabilities, e.g., memory corruption and SGX-
specific vulnerabilities like null-pointer dereferences. While
fuzzing is a popular technique to assess the security of software,
dynamically analyzing enclaves is challenging as enclaves are
meant to be non-introspectable. Further, they expect an allo-
cated multi-pointer structure as input instead of a plain buffer.

In this paper, we present SGXFUZZ, a coverage-guided
fuzzer that introduces a novel binary input structure synthesis
method to expose enclave vulnerabilities even without source-
code access. To obtain code coverage feedback from enclaves,
we show how to extract enclave code from distribution formats.
We also present an enclave runner that allows execution of the
extracted enclave code as a user-space application at native
speed, while emulating all relevant environment interactions of
the enclave. We use this setup to fuzz enclaves using a state-of-
the-art snapshot fuzzing engine that deploys our novel structure
synthesis stage. This stage synthesizes multi-layer pointer
structures and size fields incrementally on-the-fly based on
fault signals. Furthermore, it matches the expected input format
of the enclave without any prior knowledge. We evaluate our
approach on 30 open- and closed-source enclaves and found a
total of 79 new bugs and vulnerabilities.

1 Introduction

The concept of trusted execution environments (TEEs) and In-
tel’s implementation called Software Guard Extensions (SGX)
have recently seen broad research attention [1, 12, 13, 17, 41,
50, 61, 77] as well as increasing industry adoption [4, 32, 57].
Generally speaking, SGX provides hardware-based features to
build enclaves that can execute security-critical code without

the interference of a potentially malicious OS. These enclaves
run inside a host application and should even remain secure
after the host is compromised. These properties make SGX
enclaves an attractive choice for potentially hostile environ-
ments, such as cloud environments or desktop platforms, where
malicious users can potentially interfere with the system.

In the past years, several attacks against the SGX framework
were demonstrated, mainly through side channel attacks [12,
13, 41, 61, 70]. While these attacks compromise the security of
SGX enclaves in general, these issues have practical limitations
and can usually be solved by Intel in the long run. However,
individual enclaves may suffer from software vulnerabilities
that compromise the enclave’s confidentiality and integrity
regardless of whether platform attacks succeed. Thus, while
the security of the SGX platform is essential, software security
of individual enclaves must be ensured in either case. Unfortu-
nately, this aspect has largely been overlooked by research and
an in-depth analysis is necessary, because in addition to com-
mon types of software vulnerabilities (e.g., buffer overflows,
use-after-free vulnerabilities, type confusion), enclaves have
to ensure that all trusted computations are performed inside the
dedicated and trusted memory region as only memory in this
region is secured through SGX. Thus, all input from a potential
attacker must go through input sanitization; especially pointers
must be handled with care (e.g., pointers to input buffers must
point to memory outside the enclave). Afterwards, the data
has to be copied through the trust boundary and sanitized
within the enclave. This trust boundary between the enclave’s
host application and the associated enclave lead to many
vulnerabilities in the past [17, 77].

TEEREX [17] was recently proposed to automate vulner-
ability discovery at the host-to-enclave boundary by means
of symbolic execution. It is the first tool which is capable of
analyzing enclave code and successfully detected novel vulner-
abilities in multiple enclaves. On the downside, the approach
suffers from path explosion and can only focus on specific parts
of the enclave code and approximate (or even exclude) others.
In contrast, a well-suited analysis approach to examine the
security of a given system is fuzz testing (short: fuzzing). This



method can be used for open- and closed-source applications
to enable out-of-the-box analysis with no prior knowledge of
system internals. Fuzzing is an established and robust method
with a proven track record of discovered vulnerabilities and
a very active research area [2, 10, 14, 28, 40, 48, 66, 68, 73,
81, 85]. This type of testing, and more specifically so-called
greybox fuzzing, utilizes coverage feedback from the system
under test and mutates the input to maximize code coverage.
However, vanilla greybox fuzzing tools like AFL and related
approaches [10,82] cannot be used for enclaves,as they provide
their input as a plain linear buffer. In contrast, enclaves expect
their input to be a structure consisting of several arguments and
pointers, which are possibly nested and contain again pointers
to other pointer structures. Thus, fuzzing a single enclave call
(ECALL) using a vanilla fuzzer would require detailed knowl-
edge about the layout of the input structure and a manually
written harness. Obtaining these structure layouts is feasible
for open-source code by reading the type definitions in C code,
albeit not trivial due to compiler-generated or nested/inherited
fields. However, this knowledge requirement becomes an issue
with closed-source binaries, where in-depth reverse engineer-
ing would be needed. Previous work on the synthesis of input
formats for fuzzing focuses on the purpose of specific fields in
linear input or to identify logic structures in the input—known
as grammar-based fuzzers [9,22,28]. Other approaches depend
on source code [46] or domain knowledge [51, 78]. Another
integral part for fuzzers is the code-coverage feedback that is
essential to efficiently cover large parts of the code. However,
coverage cannot be measured directly in the trusted execution
environment of enclaves, which is designed to be unobservable.

In this paper, we address these challenges and present the
design and implementation of SGXFUZZ, a novel method to
efficiently fuzz SGX enclaves by synthesizing nested input
structures. In a first step, we show how to extract the memory
from an enclave to obtain the actual enclave code. To this end,
we introduce changes to the SGX drivers for Linux and Win-
dows to automatically dump the enclave’s code upon executing
it. In the second step, we introduce a method to execute the
previously obtained memory dump of the enclave without the
need for SGX-capable hardware. We use the SIGILL signal
to detect SGX’ ENCLU instruction, which would normally
perform SGX actions (i.e., a context switch to the trusted SGX
context). To handle this, we set up our context that mimics
the SGX context and should not be distinguishable for regular
enclaves. This approach allows us to execute enclaves natively,
without emulation overhead, outside the SGX environment.

To automatically fuzz the enclaves in our execution environ-
ment, we propose fuzzer extensions to test arbitrary enclaves
without any prior knowledge of the input structures. The
first extension utilizes fault signals from specifically crafted
memory pages to incrementally learn the layout of the input
structures and to uncover possible size fields of variable-sized
arrays. The second extension probes different types of pointer
in the previously determined input layout. More specifically,

it tests whether pointers inside, outside, or on the enclave’s
memory boundary lead to distinctive code coverage, which
lets us uncover software faults related to the trusted memory
region of SGX.

We implement a prototype of the proposed approach and
evaluate our fuzzing extension using 30 open- and closed-
source enclaves. In total, we uncovered 79 new bugs and
vulnerabilities. As we show in detail in Section 3 and Sec-
tion 6.5, SGXFUZZ outperforms TEEREX as it discovers
significantly more vulnerabilities and higher code coverage.

Contributions. In summary, we make the following contri-
butions in this paper:

Enclave Dumping: Using the SGX driver, we completely
extract executable enclave code on Windows and Linux in an
automated way.

Enclave Runner: We show how to execute enclave code,
including SGX-specific instructions, natively outside SGX to
retrieve code coverage feedback.

Structure Synthesis: We present a method to synthesize
multi-layer structures of pointers, arrays, and size fields using
fuzzing.

Memory Location Havoc: To analyze whether enclaves are
vulnerable to trust-boundary attacks, we develop a fuzzing
stage that tries different memory locations for each of the
pointers in the synthesized structure.

Fuzz Analysis: Utilizing the methods developed in this
work, we analyze the security of 30 enclaves and found 79 new
bugs and vulnerabilities. So far, a total of three CVEs were as-
signed and $13k in bug bounty were paid for the vulnerabilities
we identified.

Limitations of Symbolic Execution: We analyze previous
work on vulnerability detection using symbolic execution,
discuss limitations, and extensively compare the results with
SGXFUZZ.

2 Background

The Intel Software Guard Extensions (SGX) [45] are a promi-
nent technique to create self-contained libraries that can be
executed within a secure context, unobservable by anyone
except the enclave’s author. However, this neglects possible
vulnerabilities, which makes security testing a necessity. This
section provides background information on SGX, the enclave
structures, and the calling convention of enclaves to explain
the starting point of SGXFUZZ. Thereafter, we summarize the
principles of greybox fuzzing and the modules that provide the
foundation for SGXFUZZ.

2.1 Intel Software Guard Extensions (SGX)
SGX is an extension set that provides instructions on Intel
CPUs to create encrypted and protected memory and code



sections that can be called using a controlled interface. Since
the initial state of an enclave is cryptographically verified and
the integrity of the hardware can be attested remotely, this
allows trusted execution on remote hardware.

Enclave Low-Level Interface. Initialization of an enclave
is done at kernel level by copying the data provided by the
enclave developer into memory pages from the Enclave Page
Cache (EPC). Next, the memory pages of the enclave are
added to the virtual address space of the host application.
Thereafter, the initial state is cryptographically verified. At
this stage only the enclave itself can access its memory. The
memory of the host application remains unrestricted and
can also be accessed from the enclave. Further, enclaves
define a public interface for function calls (ECALLs) from
the host application which is specified in the Thread Control
Structures (TCS). These structures specify the only addresses
at which execution in an enclave can start. Moreover, TCS
are locked and can only be used by a single thread to enter the
enclave, which limits the concurrency within enclaves.

Entering an enclave (i.e., switching to the secure context)
is implemented in the EENTER leaf function of the ENCLU
instruction. EENTER locks a given TCS, enables the secure
processing mode, and transfers the execution context to the
defined entry point. When the enclave finished the execution of
the call, the execution context is transferred back using EEXIT .
In detail, EENTER affects several registers, e.g., RAX, RBX
and RCX are used as arguments, RSP and RBP are saved (and
restored on EEXIT), and FS and GS are set according to the
TCS. The remaining registers like RDI and RSI are unaffected
by EENTER and used to pass user-defined arguments to the
enclave. Since the registers are very limited in number and size,
enclave developers usually use an SDK that provides copy
stubs for more complex data types. These SDKs use the reg-
isters to pass a pointer to shared memory, which is then used to
copy the actual arguments of the ECALLs. The next paragraph
describes the calling convention of the Intel SGX SDK.

Enclave High-Level Interface (Intel SGX SDK). The Intel
SGX SDK [42] provides stubs to call enclave functions with
complex arguments using a single TCS. It uses RDI to indicate
the enclave function (ECALL) and RSI as the pointer to a
data structure that contains all arguments. The stubs validate
the pointers and copy all data into secure memory. Next, the
actual enclave function is invoked using these secure copies.
The SDK also provides outside calls (OCALLs) that act in
the reverse: The enclave is left, a specified function in the
host application is executed, and the return values are copied
into the enclave. In addition, the SDK adds another internal
ECALL for initialization, that is usually executed right after
the instantiation of an enclave to, e.g., setup global objects.

The SDK translates ECALL signatures into structures as
follows:

• A function without arguments (void ecall()) just uses
a nullptr instead of a struct pointer.

• Return values and primitive types are packed into the
struct: int ecall(int arg)

→ struct ms_ecall_t { int ret; int arg; }

• Buffers are combined with a size field:
void ecall([size=buf_s] char* buf, size_t buf_s)

→ struct ms_ecall_t { char* buf; size_t buf_s; }

• For C-strings, an internal size field is added that is
checked against strlen in the enclave:
void ecall([string] char* buf)

→ struct ms_ecall_t { char* buf; size_t len; }

Additionally, user types may be passed unchecked using a
raw pointer (void ecall([user_check] void* ptr)), but this
easily leads to vulnerabilities.

Memory Corruption Vulnerabilities. In this paper, we focus
on memory corruption attacks [74] against software running in-
side an SGX enclave. In general, these attacks are possible due
to programming errors that allow an attacker to perform mali-
cious reads and writes to application memory, e.g., overwriting
data on the stack or the heap. These attacks have devastating
consequences for security-critical SGX software as they
often allow extraction of cryptographic keys stored in enclave
memory [53]. Furthermore, SGX enclaves developed with
the Intel SGX SDK offer a large attack surface for launching
return-oriented programming attacks [69]—the state-of-the-
art memory corruption attack technique—as they provide a
large number of powerful gadgets (i.e., allowing access to
many CPU registers) that are located at fixed memory loca-
tions [8]. Recent studies confirm that invoking these gadgets is
highly probable, as public SGX frameworks and SGX enclaves
including commercial fingerprint driver software suffer from
a variety of memory corruption vulnerabilities [17, 77]. One
important lesson from existing vulnerability studies in SGX
software is the high probability of null-pointer-dereference er-
rors. While these play a negligible role in modern PC software,
they are highly relevant in the context of SGX as the under-
lying SGX adversary model assumes an attacker that controls
the kernel, thereby allowing memory allocation at arbitrary
addresses (including the NULL page). We will come back to
these errors when analyzing real-world enclaves in Section 6.

2.2 Greybox Fuzzing
Fuzzing is an automated software testing method where
random input is used to test a target program for potential
software faults. Depending on the target’s execution result,
the fuzzer mutates the input to explore previously unseen code
paths. This way, the fuzzer aims to maximize the total code
coverage achieved during the entire fuzzing process.

Fuzzers are separated into different flavors depending on
their ability to retrieve information about the target’s execution
run. Greybox fuzzers have no access to the target’s source
code, but utilize code coverage feedback to monitor whether
the target executed a new code path. The feedback is generated



through instrumentation [25, 54, 65], emulation [29, 58, 59],
or hardware extension like Intel PT [16, 52, 56, 62, 66, 67, 84];
the feedback is usually recorded in a bitmap.

Greybox fuzzers use the coverage feedback to deploy a
fuzzing loop, where they generate an input, pass it to the
target, and record the code coverage [11, 14, 64, 82]. After
each execution, the fuzzer analyzes the coverage bitmap to see
whether a new code path was discovered. Inputs that generate
novel coverage are saved and used as a base to start new fuzzing
iterations. A fuzzing iteration consists of several stages, where
each stage usually deploys a custom input mutator and exe-
cutes the target several times to achieve new coverage based
on the stage’s mutator [3, 9]. This combines the sophistication
of different mutators to tackle specific code paths in a target
with the randomness of basic fuzzing strategies.

Snapshot Fuzzing. Fuzzers test targets repeatedly with gener-
ated inputs and aim at achieving high efficiency. This requires
an efficient technique to reset targets to the state when they
accept the input. On Linux, this is usually implemented using
a fork server that forks the target process just before receiving
the fuzzing payload [14, 36, 81, 82]. Hence, the target process
does not have to be created from scratch for each execution.

Snapshot-based fuzzers [66, 72, 79] use a different strategy:
these fuzzers create a complete snapshot of the target process
that contains the target’s memory and execution context.
During the execution of the target, the fuzzer tracks which
pages of the snapshot are changed and then reloads only these
changed pages upon starting a new execution. This strategy
leads to higher execution rates compared to the fork-server
approach and can efficiently reset the state of the entire
program (or enclave) after each execution.

3 Fuzzing vs. Symbolic Execution:
Comparison to TEEREX

Aside from fuzzing there are other techniques for vulnerability
detection like the TEEREX framework [17] which uses
symbolic execution and is specialized to find vulnerabilities
in SGX enclaves. TEEREX can extract the ECALLs from en-
claves and symbolically calculate vulnerable states. However,
TEEREX suffers from several issues that lead to false positives
and false negatives. We evaluate these issues based on case
studies and describe how they reveal the limitations of the
symbolic execution approach. We start with a brief description
of conceptional differences between fuzzing and symbolic
execution, which shows the inherent limitations.

3.1 Conceptual Differences
First, there are the fundamental advantages of fuzzing and
symbolic execution, respectively. Fuzzing provides complete
and reproducible test cases with a low false positive rate.
However, every test case starts at the entry point and tests a

full execution path. Further, fuzzers have to test identical code
paths multiple times until they find a new path because the exact
relation between input bytes and branches taken is unknown.

Symbolic Execution, on the other hand, is a comprehensive
approach to explore all possible program states in a single
analysis. However, a complete analysis of non-negligible
code sizes is infeasible due to the amount of possible states.
Hence, practical symbolic execution approaches focus on
specific parts and approximate or exclude others. Moreover,
there are conceptional no-ops in programs that introduce high
complexity for a symbolic solver. For example, SGX enclaves
create secure copies of input using malloc and memcpy. While
this hardly affects possible memory corruptions, these memory
management functions consist of many read/write instructions
that impose a burden for the symbolic memory. As a counter-
measure, symbolic execution engines try to replace these func-
tions with mocks that are optimized for symbolic engines, but
this is not trivial for stripped closed-source binaries, whereas
the overhead of these functions is negligible for a fuzzer. As
a result, it is difficult for TEEREX to analyze ECALLs with
complex input structures in stripped closed-source binaries.

3.2 Limitations of TEEREX

TEEREX aims to find a symbolic connection between the argu-
ments of an ECALL and executed read, write, and jump/call
instructions. Thereafter, it analyzes the context and determines
if the conditions on the state allow unintended destinations.
When argument data is used as an address without further
check, this is an indicator for a vulnerability.

This analysis depends on soundness and (relative) complete-
ness of the symbolic analysis. This section discusses cases
when approximations and optimizations lead to false reports.

3.2.1 False Negatives

First, we analyze reports of TEEREX to discuss sources of
false negatives caused by the symbolic execution approach.

Case Study: Heap Memory Corruption. During our
evaluation, we discovered three bugs that corrupt the heap
memory by writing beyond the allocated memory. In each of
the cases, bytes are written linearly, so that it is not possible to
write to arbitrary memory locations. In general, these bugs are
hard to detect by a greybox fuzzer because memory validators
like ASAN [34] cannot be added after compilation.

However, Intel’s trusted library for SGX utilizes a custom
implementation of malloc and free because system functions
are not available in enclaves. This implementation stores a
header consisting of a magic value and the size of an allocated
memory chunk prior to the actual memory. The magic value
is a 64-bit random value, generated on the first call of malloc
and is equal for all chunks. The corresponding free function
checks this magic value, reads the chunk size, and then reads
the magic number following that chunk. If either of them is



invalid, the function terminates with a segmentation fault.
Thus, when a bug corrupts heap memory, this magic number
is destroyed and the program crashes on the subsequent call
of free or malloc. In addition, free crashes on any pointer
not allocated by malloc, as the magic number is missing.
This mechanism provides the fuzzer with an excellent bug
oracle for heap memory corruption and freeing invalid (e.g.,
uninitialized) pointers. On the other hand, this scenario is
challenging for symbolic execution:

Incomplete model. When symbols are available, TEEREX
and in particular the underlying framework ANGR, uses
symbolic replacements for standard functions to reduce the
path complexity. Specifically, the replacement for malloc
always returns a new chunk of heap memory and free is a no-
op which does nothing and always succeeds. In this heap model,
the oracle is not available and this kind of bug cannot be found.

State/Constraint Explosion. When symbols are not available,
TEEREX cannot replace the memory management functions
as described above. Consequently, the checks of the SDK’s
malloc are still present, but functions like memcpy add more
constraints to the symbolic state than the solver can handle.
This is particularly complex when the size argument is
symbolic. As a result, the storage for each state as well as the
evaluation time for branch decisions increases significantly.
This forces TEEREX to abort exploration of these paths early
and miss potential bugs.

3.2.2 False Positives

Second, we sample the results reported by TEEREX to find
common sources for false positives. However, the number of
reports make an exhaustive evaluation infeasible.

Case Study: Pointer Range Checks. The results for the
enclaves sgxwallet and BiORAM-SGX include reports for
instructions in the ECALL wrapper that copy data into [out]
buffers. These out buffers (destination addresses) are attacker-
controlled, however, the SDK wrapper ensures that out buffers
are outside the enclave.

Incomplete Address-Space Model. TEEREX emulates en-
claves without the clear separation of the address space of
the host application. In addition, ECALL arguments are fully
symbolic so that concrete values for nested addresses may
be within as well as outside the enclave. When TEEREX
encounters a write to an attacker-controlled address, it may
conclude that this is a vulnerability, although the address was
range-checked. This is especially the case for out buffers,
which are a common concept of enclaves, where an enclave
writes to a user-defined non-secure address by design. This
leads to false positives because these addresses usually cannot
be used to manipulate trusted memory. As a countermeasure,
TEEREX tracks the range checks for pointers of the SDK, but
cannot automatically infer whether these constraints make the
pointer in question a false positive. Additionally, this pointer

tracking technique requires symbols and thus does not aid for
the analysis of closed-source enclaves.

4 SGXFUZZ Architecture

The high-level view of our fuzzing architecture is visualized
in Figure 1. This section introduces the main components. We
first show how to execute enclaves outside SGX while still
maintaining memory separation and context switches during
the enclave execution as part of our runner. In the second step,
we show the design of our fuzzing setup to synthesize input
structure layouts incrementally using signals. Thereafter, we
describe our novel mutation stages that are specialized to find
vulnerabilities in SGX enclaves. The implementation details
of each component will be described in Section 5.

Enclave Dumper (cf. 5.1). We first extract the enclave’s
memory from the enclave’s distribution format (shared library
file, .so). Our enclave dumper saves the memory (code and
data), and additional metadata, i.e., the enclave’s memory
layout, page permissions, and the entry points (TCS). We
compile the enclave data into our enclave runner, which is a
regular executable that acts as a harness around the enclave.

Native Enclave Runner (cf. 5.2). The enclave runner (or har-
ness) is capable of executing any ECALL outside SGX using
the dumped enclave, a serialized structure description, and the
payload bytes. First, the harness initializes the simulated SGX
environment: It installs handlers for the SGX instructions
and prepares memory and registers for the EENTER call.
Then, the runner reads the input structure definition and
the payload—usually from the fuzzer during the fuzzing
loop—and rebuilds its representation in memory. That is, it
allocates all necessary buffers, places the addresses of nested
buffers in the parent buffers, and fills the remaining fields
with the payload. Thereafter, the given ECALL is invoked
using this structure as the argument. We simulate the context
switch to the SGX environment, jump to the ECALL entry,
and the execution of the enclave continues as programmed by
its developer. When the enclave code encounters one of the
SGX-specific functions, the CPU interrupts because it is not in
SGX-mode, and the harness is notified via a signal (SIGILL).
We emulate this instruction and resume execution right after
that instruction. If the execution encounters a crash, e.g., a
segmentation fault, the harness collects the fault information
and submits those to the fuzzer for the structure synthesis.

This runner enables us to execute any enclave natively in
normal user-space without any SGX restrictions or emulation
overhead. In addition, we receive detailed feedback about
crash reasons, thereby enabling our structure synthesis.

SGX Structure Fuzzer/Synthesis (cf. 5.3). The novel
fuzzing stage for structures uses the signals emitted during
the enclave’s execution to generate and adapt the layouts of
the structures. We detect missing fields and incrementally
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Figure 1: SGXFUZZ Architecture.

recover the expected layout of the input. In detail, whenever
the fuzzer finds a new input that causes a signal (SIGSEGV),
the fuzzer checks whether a struct mutation can resolve the
crash, i.e., it examines whether the enclave interprets part of
the payload as pointer. If this is the case, it alters the structure
layout for subsequent fuzzing runs, so that the enclave will
find a pointer/sub-buffer at that location. To further improve
the detection of bugs specific to SGX and the structure-based
fuzzing approach, the fuzzer also tests whether the execution
path diverts when the pointers of child buffers are within
special regions like the enclave’s memory.

5 SGXFUZZ Implementation

We now provide details of our prototype implementation of
SGXFUZZ. We first describe the enclave dumper, followed
by a description of the enclave runner. Finally, we discuss our
fuzzer extensions, implemented on top of the kAFL fuzzer [67]
and the Nyx snapshot-fuzzing engine [66].

5.1 Extracting Enclaves from Distribution
Formats

In the fuzzing process, we want to match the execution of
the original SGX hardware as closely as possible. Therefore,
we need a dump of the enclave’s memory to load it into our
fuzzing harness. However, most enclaves are not distributed
as raw memory dumps but packed into a container format like
ELF (.so) or PE (.dll). We develop different methods for
extracting the memory of enclaves precisely as the hardware
during initialization. In this process, we also collect all entry
points (TCS) and memory permissions within the enclaves to
recreate the exact application setup in our fuzzing harness.

SGX uses at runtime a continuous block of secure memory
(EPC) [20] that contains all sections needed to run the secure
application, most notably, the code section and sections for
the stack and the heap data. The Intel SGX SDK uses the
ELF/PE format to store enclaves and loading is modeled
after common application binaries. However, compared to the

default OS loader, there are some important differences for
loading enclaves: (1) Enclaves do not contain gaps, therefore,
the loader cannot use the default address ranges for, e.g., the
stack, (2) host applications (compiled using the Intel SGX
SDK) apply some patches during load time, e.g., to address
relocation sections, (3) the exact loading behavior may differ
depending on the host application, SDKs, or SDK versions,
because they are not technically bound to a standard.

First, we modify the driver module of SGX for Linux [44]
to dump every loaded enclave. This is a reliable way to extract
the exact memory that the hardware uses for initialization
and is independent of the distribution format of the enclave,
the host application, and any framework used. Since this
method requires SGX-capable hardware, we develop a second
approach to automate fuzzing of SGX enclaves in, e.g.,
Continuous Integration (CI) pipelines on non-capable server
hardware: The SGX SDK comes with a signing tool [42] that
calculates a hash over the enclave memory to create the signing
data. This hash requires the enclave to be unpacked, thus we
can dump the memory during this calculation. This is a fast
and hardware-independent method to dump the memory, but
is only applicable to the SDK’s enclave format and there is a
chance that the result contains erroneous bytes due to version
differences. However, it produces correct results when the SDK
versions match, and we have only seen issues when the enclave
was compiled using an SDK version several years older than the
dumper’s version. In that case, we could back-port the dumper
to the older SDK version to correctly dump these enclaves.

Dumping enclaves for Windows is hindered because the
driver and the signing tool are closed-source and cannot
be patched as easily. However, we implement automatic
extraction of Windows enclaves using a debugger and specific
breakpoints in the signing tool. Alternatively, we can enable
the debug mode of enclaves and extract the memory after
loading, which requires some manual work. Both methods are
rather slow and cumbersome, but they produce valid memory
dumps despite the tools being closed-source.



5.2 Fuzzing Harness: Running Hardware
Enclave Binaries in Normal User-Space

Fuzzing SGX enclaves requires an introspectable environment
that can quickly execute ECALLs and return to the initial
state for the subsequent execution. These requirements make
fuzzing using SGX hardware impracticable for several reasons.
First, SGX enclaves are meant to be not introspectable. There
are approaches to collect coverage data using side chan-
nels [23], however, they are slow and yield far less information
than using debugging features. Further, we could execute
the enclaves in (hardware) debug mode and use the special
enclave debugging instructions to extract coverage data, but
the capabilities of these instructions to produce coverage data
are limited and comparably slow. Second, the protections of
SGX hinder the state reset that is required for efficient fuzzing.
SGX enclaves cannot be forked, so to run a second test case
using a real enclave, the secure memory has to be allocated
and initialized from scratch, including the enclave’s initial
measurement. Alternatively, it may be possible to reset the
state of an enclave using the debugging instructions. However,
the debugging instructions cannot reset whole pages, so a slow
loop would be needed to reset the whole enclave. In practice,
both approaches are too slow for fuzzing. Third, the secure
memory (EPC) is limited to less than 128 MB [26] on common
CPUs, which is the available memory for all enclaves and
imposes a hard limit on the number of enclaves that can be in
memory simultaneously. Therefore, a high performance CPU
will quickly surpass this limit when trying to create an enclave
for every core for efficient parallelized fuzz testing.

We develop an interrupt-based runtime that can run a
hardware-targeted enclave as a regular user-space application.
This enables a fuzzer to record code coverage feedback through
state-of-the-art greybox fuzzing techniques like Intel PT [52].
While Intel PT cannot record genuine enclaves, it is possible us-
ing our approach as we never actually switch to the secure con-
text, but instead execute all enclave code in normal user-space.

In detail, our runner executes SGX enclaves as follows:
At first, when the runner is started, it initializes a continuous
block of memory with the enclave’s memory in its own address
space and applies the memory permissions as recorded by
the dumper. Then it executes the SDK’s special initialization
ECALL as the normal enclave creation would do. Thereafter,
the runner reads the input from the fuzzer and allocates
memory for the input structure according to the serialized
layout specification. Thereby, every buffer is placed at the end
of a memory page to be followed directly by an inaccessible
guard page as depicted in Figure 2. This enables the fault
detection required by the structure synthesis (cf. Section 5.3.1).
When (nested) child pointers are present, those are allocated
analogously and the addresses are placed into the parent
buffers. Similar, the values for size fields are calculated and
inserted into the respective buffers. The remaining fields of the
structure are filled with the fuzzing payload. Then the runner

*guarded buffer

*input buffer guard page

*buffer guard page

size field = sizeof(buffer)

AB AB AA BB CC BC CC BA

AB AB AA BB CC BC CC BA
AB AB AA BB CC BC CC BA

AB AB AA BB CC BC CC BA
AB AB AA BB CC BC CC BA

AB AB AA BB CC BC CC BA

*guarded buffer
...

Figure 2: Allocation scheme of the fuzzing harness. Every
buffer is followed by a guard pages that enables to detect the
buffer sizes using fault signals.

ECALL()
{

    ...
    EREPORT
    ...
}

runner_main()
{
    setup()
    ecall(fuzz)
}

SIGILL_handler()
{
    EREPORT_mock()
    return
}

Enclave

Runner

Figure 3: SIGILL-handler to emulate special SGX instructions.

can execute a given ECALL by jumping to the entry point
defined in the TCS using the structure as argument.

Whenever the execution reaches an SGX instruction, a
SIGILL signal is emitted and handled by the runner to emulate
the SGX instruction. The runtime reads the encountered in-
struction, adjusts the register state accordingly (e.g., generate
fake keys or change memory permission), and resumes the
execution (Figure 3). When an EEXIT instruction is reached,
which also triggers the signal, the runner terminates.

When the runner receives a memory error (segmentation
fault), it uses Zydis [86] to disassemble the faulting instruction
and calculate the memory address that caused the error, which
is reported to the fuzzer for struct-synthesis (Section 5.3.1).

5.3 SGX Structure Fuzzer
We base our implementation of SGXFUZZ on the kAFL
fuzzer [67], which is a feedback-driven greybox fuzzer that
utilizes Intel Processor Trace (PT) [52] for coverage feedback.
In addition to the classic AFL mutation stages [82], this im-
plementation of kAFL features a radamsa [39] mutation stage
and the Redqueen [3] input mutator, which is considered as the
state-of-the-art solution to tackle common branch constraints.

The fuzzer collects coverage feedback from Intel PT in an
AFL-like bitmap using modified versions of QEMU/KVM to
execute the targets. In this setup, the targets are not emulated,
but run natively on our fuzzing hardware, which significantly
reduces the fuzzing overhead. The snapshot engine of Nyx [66]
initializes the targets in KVM and creates a snapshot of the



complete state of the fuzzing target right before processing
the fuzzing input, which enables an efficient state reset.
The snapshot engine replaces the fork-server scheme that
is commonly used in AFL or AFL++ [29]. We choose Nyx
because it provides state-of-the-art fuzzing performance and
significantly outperforms [66] QEMU-based fuzzing.

5.3.1 Structure Synthesis

We develop a custom fuzzer stage that incrementally and dy-
namically synthesizes the layouts of input structures. It is based
on error signals and uses guard pages as depicted in Figure 2.
Structures are allocated in a way that every input is followed by
an inaccessible guard page,which ensures that the fuzzer is noti-
fied, when the enclave tries to access more data than provided—
beyond the end of a buffer. The fuzzer starts with an empty ini-
tial structure, that gradually evolves during the fuzzing towards
the expected complete input layout. Since layouts may depend
on the values within (e.g., type fields in union types), the fuzzer
tracks layouts tied to the input where it was found, so that di-
verse layouts may evolve for different inputs/paths in a target.

We will now describe the synthesis process in detail. The
structure synthesis is a stage of the fuzzing process like other
input mutation stages that every input traverses. When an
input and layout from a previous stage reached the structure
synthesis, it checks whether this input causes the target to exit
abnormally, with a SIGSEGV signal. In that case, the target
attempted to access an invalid memory reference, either due
to an incomplete structure or due to a bug.

Our structure synthesis then collects all necessary addresses
from the target and checks whether the faulting location is
within one of the guard pages. This is a strong signal that the
provided input buffer is too small. Therefore, the synthesis
stage increases the size of this buffer gradually as long as a
fault is reported within this guard page. Figure 4 shows these
faults and the influence on the structure. Usually, the final
length of the buffer cannot be deducted directly from the first
report because most enclaves use a linear copy function to
copy the buffer into secure memory, so that the error location
is always at the beginning of the guard page. Newly allocated
bytes of increased buffers are filled with random bytes.

As a second case, the fault may not be in a guard page, but
contained as a value in one of the input buffers. This indicates
that the target expected the value to be a pointer to another
buffer—and the synthesis extends the layout with a new buffer
to make this value a pointer (see Figure 4). The synthesis
also tolerates small offsets between the faulting address and
candidate values in the structure to identify cases where not
the first byte of the missing buffer is referenced but another
field. We chose 0x100 as a reasonable maximum offset that
will usually identify the correct value but is small enough to
not lead to significant false positives due to randomly similar
unrelated values. However, it might lead to incomplete struc-
tures for targets that read (only) a field, e.g., at offset 0x110

(cf. Section 6.3). Further, for newly added pointers, the size
of the corresponding buffer is still unknown. Therefore, it is
initialized with a size of zero and the fuzzer executes the target
again. The target will now find a pointer where it previously
found a non-pointer value. Accessing this pointer will still trig-
ger a fault, but this time it will be within the guard page of the
newly added pointer and it can be increased as described above.

5.3.2 Size Field Detection

Input structures often contain a field for the size of variable-
length buffers because dynamic length calculation on untrusted
data using functions like strlen is prone to introduce infor-
mation leakage [77]. Hence, the size should either be constant
or provided with the buffer until the data is copied to secure
memory. If the intention was to pass a NULL-terminated
string, the length should only be validated afterwards, using
the secure copy.

In the context of fuzzing, size fields that are included in the
buffer, are initially also filled with (random) fuzzing payload.
In most cases the resulting value is far from the actual buffer
size and input becomes cropped or is rejected early and the
fuzzer can hardly pass the copy functions at the beginning of
many ECALLs. To counteract this, we search for size fields
whenever the buffer layout is changed in the struct synthesis
stage. When this is successful and size fields are found, they
are marked in the struct layout and set to the size of the
corresponding buffer rather than filled with fuzzing input.

In particular, the size field detection is triggered, when the
target reports a fault in a guard page which cannot be fixed by a
small increment of the buffer. This indicates that the size of the
buffer is not limited by a (reasonably small) constant number,
but by other means like a large integer originating from random
bytes in the fuzzing input. To find the position of the size field
in the structure, the detection sequentially inserts the actual
size of the buffer at all offsets of the fuzzing payload. If at one
offset the fault is resolved (or a different unrelated fault), this
indicates that this value limited the memcpy causing the error.
Next, the offset is verified by executing the same test again, but
with the value of size+1,which is expected to produce the same
fault position as observed initially if the offset is indeed the
correct size-field of the buffer. An offset that passes both checks
is inserted into the struct layout and the subsequent fuzz testing
will use the (static) size of the buffer at this offset instead of
filling it with fuzzing input. While the relation of a dynamically-
sized buffer is ensured during the fuzz runs, it may still be too
small for the semantics of the enclave. However, enclaves
using size fields will just compare the size value and buffers
are not increased due to the guard-page method. We tackle
this in a later stage that tests whether different buffer size yield
additional coverage. The stage that we call Size Field Havoc
sequentially adjusts the size of buffers that are linked to a size
field to test if specific sizes yield unique coverage. We chose to
test sizes up to 256 bytes as this is a reasonable size for buffers
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Figure 4: Struct Synthesis Events during fuzzing (left) and
the resulting changes to the nested pointer structure (right).

in the struct layouts and it is small enough that subsequent input
mutation stages have a fair chance to mutate impactful bytes.

5.4 Fuzzing Edge Cases and SGX-Specific
Extensions

In addition to the structure synthesis, we implement features
to tackle edge cases that hinder fuzzing of some enclaves and
add SGX-specific bug oracles.

ECALL Exploration. The ECALL interface specifies two
arguments, the index of the ECALL in the ECALL table and
the (pointer to the) argument structure. Since our fuzzing stages
only process the latter, and the index is not part of the structure,
the index is not mutated in these stages. Therefore, we initially
explore the ECALLs offered by the enclave and test each
ECALL ID from 0 to 255 whether it contributes new coverage,
i.e., is an existing ECALL number. This yields an initial
payload for every ECALL from which the structure recovery
can proceed. While it is supported that an enclave defines more
than 256 ECALLs, we have yet to see one that actually does.
In that case, we can easily increase the upper boundary.

Custom Initialization ECALL. During our evaluation, we
encountered three enclaves that define a custom initialization
call to set up a context, which is required to be called first.
Typically, every other ECALL checks if the initialization
has been called and immediately returns otherwise. Thus,
meaningful fuzzing is not possible without including the
initialization call. Our fuzzer supports to load and execute the
layout and payload of a specific ECALL during the setup of the
runner, before the kAFL/Nyx environment takes the snapshot
and the fuzzing loop starts. This way, the initialization ECALL
has zero overhead on the actual fuzzing runs, as it is only
executed once during the setup. This feature makes the Signal
enclaves fuzzable which require an initial constant call to init.
This feature can be seen as a lightweight variant of call chains
discussed in Section 7, which we consider future work.

Pointer Location Havoc. We implemented an SGX-specific
bug oracle that we call pointer location havoc to search for
bugs related to the confusion of memory regions within SGX
enclaves. Enclaves usually specifically check and only accept
pointers from the outside, i.e., non-SGX memory, using the
dedicated functionssgx_is_outside_enclave andsgx_is_
within_enclave. However, some enclaves also accept point-
ers within the range of the enclave—either because of an error
or to explicitly reuse a previously allocated reference. Since
this is a bad practice that often leads to vulnerabilities that com-
promise the enclave’s integrity [17], we develop this oracle to
find cases where the target accepts such dangerous pointers.
We iteratively alter the synthesized structure layout and substi-
tute the regular outside pointers with pointers from different re-
gions. Specifically,we test In-Enclave Pointers, pointers within
the range of the enclave’s secure memory, and Boundary Point-
ers, pointers to the boundary between user-space and enclave,
so that the last byte of the buffer is the first byte of the enclave.
Boundary pointers can uncover errors that incorrectly attribute
overlapping buffers to the secure memory region. Note that this
process only changes the addresses of the pointers, whereas
the content of the buffers stay the same. This does not violate
the threat model of an enclave that accepts in-enclave pointers
because an attacker can use a pointer to the secure copy of his
own input to get a content-controlled in-enclave buffer.

We additionally use inaccessible pointers in the respective
ranges to explicitly test whether an enclave actually uses these
kinds of pointers or just preliminary rejects them based on a
range check. For example, if a regular/outside pointer within
a structure is inaccessible, the enclave will segfault upon using
it. If the same fault is found for an inaccessible inside pointer,
the enclave used this pointer without check and is probably
vulnerable.

5.5 Post Processing
The novel structure recovery stage uses segmentation faults
to detect incomplete structure layouts. However, this overlaps
with the bug detection of the fuzzer that uses segmentation
faults as bug indicator. This introduces edge cases where the
fuzzing engine cannot clearly decide on-the-fly whether a crash
is attributed to the structure synthesis or to the crash-based
bug detection. These cases are stored in the fuzzing output.

We developed an automated post-fuzzing procedure in form
of a script that uses the final fuzzing output to correctly identify
miss-classified crashes that should have been originally
attributed to the structure synthesis.

i. NULL-pointer Dereference: When the reported fault
address is very small, there is a high probability that this is
caused by a NULL-pointer dereference bug. Thus, we do not
use addresses below 0x100 for struct recovery even if there
is a suitable candidate value in the payload. The fuzzer will
quickly find another test case with a larger value to trigger the
struct recovery. During the post-processing, we automatically



filter small fault values where a matching small payload value
is present to identify real nullptr dereferences.
ii. Pointers in Payload: The fuzzer and especially the fuzzer’s
RedQueen extension can add valid pointers by chance at the
correct offset in the payload. However, since they are not part
of the generated layout, the contents behind these pointers
is arbitrary and not filled with fuzzing payload. These are
not reproducible and not meaningful to indicate bugs. The
post-analysis can easily identify those because the fuzzer will
also show a structure with this offset marked as a pointer.
iii. Large Pointer Offsets: Enclaves may access pointers using
an offset larger than 0x100, which currently is not used by
our fuzzer for sub-buffer identification. However, incomplete
structures due to this reason are rare, and our results show that
we can synthesize structs with high accuracy (Section 6.3). On
the other hand, increasing this value can cause false positives
in the structure synthesis.
iv. Size Fields Prior to Detection: When not-yet-detected size
fields are present in the structure, their values are determined
from the fuzzing payload. When additionally the targets
accesses this buffer non-linearly—e.g., it first accesses the last
byte (buffer+size)—the structure synthesis will receive a
fault at a (large) random offset and it cannot reasonably match
the fault to a buffer. This fault is then rejected by the struct
synthesis and generates an entry in the crash log. However,
due to the fuzzer’s speed and number of executions, it also
finds payloads that correctly trigger the synthesis and size field
detection. The post-analysis identifies these cases from the not
yet final structure that is logged with the crash.

Filtering these types of false positives reduces the total
amount of reported crashes from up to a few hundred to a
suitable amount for manual analysis (cf. Table 3). We manually
verified that all remaining crashes were caused by an actual
software fault in the target.

6 Evaluation

In this section, we evaluate the SGXFUZZ prototype to
validate our design choices. We first validate our choice
of fuzzing runtime showing that the native snapshot-based
fuzzing engine is superior to alternative emulation-based
engines. We then run SGXFUZZ on a large set of real-world
enclaves and evaluate the accuracy of the structure synthesis.
We further compare the scalability and the achieved coverage
of SGXFUZZ to TEEREX and show that our approach covers
more basic blocks, does not suffer from state explosion, and
reports no false positives.

Experimental Setup. We used two test benches for our
evaluation: One server with two Intel Xeon Gold 6230 and
196 GB RAM, and a second server with two Intel Xeon Gold
6230R and also 196 GB RAM. We fuzzed each target for 24 h
using 40 cores (resulting in 960 core-hours spent per target).
We used the same initial seed for all fuzzing runs.

Fuzzing Targets. Table 1 shows the targets that we used
for our fuzzing evaluation. We selected our enclaves from a
broad spectrum ranging from production enclaves to research
prototypes. Unfortunately, we could not include a password
manager with SGX capability. The two password managers
Dashlane and 1Password (before v7.0) advertise SGX on their
website, and 1Password even distributes binaries labeled with
SGX. However, we were not able to find any trace of actual
enclave usage in both cases.

Responsible Disclosure. We disclosed our findings in a coor-
dinated way to the authors and vendors of the tested enclaves.
We sent them detailed reports and helped them to fix the identi-
fied software faults. Synaptics assigned CVE-2021-3675, and
sgxwallet CVE-2021-36218 & CVE-2021-36219.

6.1 Results
In total, we found 79 vulnerabilities, of which three have been
assigned CVEs and a bug bounty of $13k was issued. Table 1
shows the number of manually verified unique vulnerabilities
for each fuzzing target and Table 2 shows the exact class of
each vulnerability accordingly. Additionally, Table 3 includes
coverage data and reports for SGXFUZZ and TEEREX, which
will be discussed in the following sections.

Notably, we did not encounter any false positives in our
evaluation of SGXFUZZ. We manually verified that each
report is caused by an actual bug, only some bugs occurred
duplicated, resulting in more reports than verified bugs.

Security Implications. Table 2 shows that a lot of vulner-
abilities are classified as either null-pointer dereferences or
uninitialized pointer usage. However, in the context of SGX
they are not less severe than, e.g., a memory corruption. In
the case of the Goodix Fingerprint Driver enclaves, we were
able to craft an arbitrary read exploit with a single null pointer
dereference. Unfortunately, the vendors of the Gingytech
Fingerprint Driver and the Goodix Fingerprint Driver enclaves
have no intention to fix the vulnerabilities even after providing
a fully functional proof-of-concept exploit.

6.2 Runtime Considerations
We develop the first binary-compatible runtime for hardware-
compiled SGX enclaves that does not require SGX hardware
support. OpenSGX [47], a QEMU-based environment for
SGX code, does not provide a suitable runtime for our fuzzing
targets because it cannot execute enclaves compiled for SGX
hardware, but requires a dedicated compiler and SDK setup.
Thus, OpenSGX cannot run binary-only enclaves due to
lacking binary compatibility. In addition, OpenSGX has been
deprecated since 2016 and cannot run real-world enclave
code.1 Nevertheless, to give a rough baseline, we measure the
execution speed of OpenSGX’ hello-world example, which

1https://github.com/sslab-gatech/opensgx/issues/50

https://github.com/sslab-gatech/opensgx/issues/50


Enclave Version #ECALLs #Execs
#Covered

Basic Blocks #Bugs
Struct Accuracy

(source code)

BiORAM-SGX d86dab22dba12 15 6.8∗109 1802 0 Coverage Match
ELAN Fingerprint Driver 3.4.12210.10801 25 7.0∗109 675 0 closed-source
ELAN Fingerprint Biometric SSL 3.4.12210.10801 29 5.7∗109 2206 14 closed-source
Gingytech Fingerprint Driver 2.0.1712.0318 3 4.6∗109 4080 16 closed-source
Goodix Fingerprint Driver Coating Enclave 2.1.145.103 30 5.2∗109 1698 6 closed-source
Goodix Fingerprint Driver Glass Enclave 2.1.145.103 30 4.7∗109 1736 8 closed-source
Goodix Fingerprint Driver WBDI Enclave 2.1.145.103 31 6.2∗109 1404 14 closed-source
Intel AE Launch Enclave (LE) 2.13 2 6.0∗109 429 0 Perfect Match
Intel AE Provisioning Cert. Enc. (PCE) 2.13 2 9.8∗109 490 0 Perfect Match
Intel AE Provisioning Enclave (PVE) 2.13 2 4.1∗109 452 0 Perfect Match
Intel AE Quoting Enclave (QE) 2.13 2 5.9∗109 407 0 Coverage Match
Intel SDK Initialize ECALL 2.13 1 3.1∗109 257 0 Coverage Match
KubeTEE TFF 1c5ab9f5ca645 3 1.8∗109 3320 0 Perfect Match
Ledger BOLOS 573464ed78354 13 7.4∗109 1076 0 Coverage Match
lockbox 0c70a7d02c1b7 17 6.7∗109 3689 2 Coverage Match
MobileCoin 1.0.1 1 5.3∗109 11888 0 Coverage Match
Occlum Runtime Libos 0.22.0 7 7.1∗109 977 0 Coverage Match
OMEC Project’s C3P0 – Dealer 771c0c383c4d9 6 7.2∗109 226 1 Perfect Match
OMEC Project’s C3P0 – KMS 771c0c383c4d9 4 6.8∗109 1673 1 Perfect Match
Plinius 31a51ff3d2d90 7 4.8∗109 646 2 Coverage Match
SGX Darknet 0fe09ccb9aa62 4 6.1∗109 527 3 Coverage Match
sgxwallet 1.58.3 38 2.6∗109 3865 2 missed output buffer
Signal Contact Discovery 1.13 7 7.0∗109 560 0 Coverage Match
Signal Secure Value Recovery 1.0.20 7 5.9∗109 11989 0 Coverage Match
STANlite 16467c8034e84 3 2.6∗109 6621 4 Perfect Match
Synaptics Fingerprint Driver Enclave 5.2.3539.26 2 6.7∗109 1416 1 closed-source
Tensorflow Lite 5dc3b3d97844d 1 6.7∗109 492 0 Perfect Match
Town Crier 33471ff56cb75 33 3.2∗109 4748 5 Coverage Match
TresorSGX d2e529ea977fe 4 6.7∗109 622 0 Perfect Match
WolfSSL 099ec3b 22 7.5∗109 714 0 Perfect Match
n=30 Σ 171.2∗109 79

Table 1: Target enclaves and fuzzing runs by SGXFUZZ.

No. Enclave Type

1–3

Goodix Fingerprint Driver Enclaves
(WBDI, Coating, Glass)

Out-Of-Bounds Read
4, 5 Heap-Buffer-Overflow
6, 7 Free Uninitialized Pointer
8, 9 Memset Uninitialized Pointer
10–28 Null Pointer Deref.
29 sgxwallet Free Uninitialized Pointer
30 Out-Of-Bounds Write

31–46 Gingytech Fingerprint Driver Unchecked Input Addresses
Unchecked Callback Address

47–50 STANlite Null Pointer Deref.
Unchecked Input Addresses

51–62 ELAN Fingerprint Biometric SSL Null Pointer Deref.
63, 64 Use Uninitialized Pointer
65 Town Crier Null Pointer Deref.
66–69 Stack Overflow
70 Synaptics Fingerprint Driver Enclave Out-Of-Bounds Write
71 OMEC Project’s C3P0 – Dealer Null Pointer Deref.
72 OMEC Project’s C3P0 – KMS Null Pointer Deref.
73, 74 lockbox Null Pointer Deref.
75–77 SGX Darknet String Overflow
78, 79 Plinius Unchecked Input Addresses

Table 2: Bugs and Vulnerabilities found by SGXFUZZ.

achieves about 33 k/s executions. An equivalent hello-world
enclave in our runner achieves 200 k/s executions.

6.3 Structure Synthesis Accuracy

We now evaluate the accuracy of the struct layouts generated
through our structure synthesis. We assess the layout’s accu-
racy by comparing the synthesized layout with the expected
layout obtained from the source files of an enclave. Since
this method requires source code access, we conduct this
evaluation only on a subset of our fuzzing targets. However, we
manually verified that the structures for the binary-only targets
are reasonable. We refer to the structure from the source code
as reference struct.

While comparing the reference struct and our synthesized
layout, we compare each pointer’s offset and the amount of
allocated memory behind the pointers. If that memory again
contains a pointer, we continue this comparison recursively. In
addition, we also compare the location of size fields and which
buffer they belong to. If this relationship is not apparent through
the name in the source code, we read through the source code
to deduct the relationship from the code’s semantic.

The results of our evaluation are shown in Table 1. Ten out
of the 23 examined open-source enclaves match the expected
structure from the source code perfectly for every ECALL.
This means that all pointers are synthesized at the correct offset
with the exact amount of memory as the reference, and that



all size fields were detected and reference the correct pointer.
There are also 12 cases of Coverage Match, which means

that only fields from the input structure were synthesized where
access to was covered during fuzzing. Thus, the synthesis did
not fully restore the input layout in these cases, but this is not
a limitation of our approach in any way because the pointers
were not used in the covered code paths, and it does not matter
to the program if they exist or not. As soon as they are used,
our synthesis will most likely provide them. The missing
coverage is caused by common fuzzing roadblocks, i.e., check
sums. Since our approach is conceptually not tied to a specific
fuzzer but theoretically works with any greybox fuzzer, it
would be possible to develop a payload mutator that handles
these roadblocks. However, we already use state-of-the-art
greybox fuzzing techniques like Redqueen [3] that aim to
tackle common fuzzing roadblocks.

Ultimately, our approach could recover all pointers and size
field on the assessed subset of samples except for one enclave
that needed minimal manual assistance (Section 6.3).

Maximum Fault Pointer Offset. During the implementation
in Section 5.3.1, we used the value 0x100 as the maximal
offset of the fault address to the corresponding value in the
input that was used as a pointer to determine the payload
position where a pointer is expected. As we chose this constant
arbitrarily, we now evaluate its impact.

The previous evaluation already shows that the struct
synthesis creates perfectly matching layouts for covered code,
including pointers with buffers larger than 0x100 bytes. The
synthesis of such large structs can only work if a field with
an offset lower than 0x100 is accessed first on any covered
code path. Then, after that pointer is synthesized, the sizes
can grow beyond 0x100 bytes. Since it is a typical pattern
for enclaves to copy buffers into the secure enclave memory
before accessing them, it is ensured that the fields of such large
buffers are accessed in ascending order, e.g., through memcpy.

There are cases in our logs of the sgxwallet enclave where
fault values have a difference between 0x100 and 0x1000 and
thus not triggered the struct synthesis. However, our synthesis
could ultimately detect these pointers through other code
paths showing that our synthesis even works in these cases. A
difference even larger than 0x1000—as unlikely as it would
be—would access memory beyond the guard page of our
allocation scheme and cannot be matched to a pointer in the
layout in a meaningful way.

Union Fields and Type Enums. Another point of concern
were union fields, where distinct data structures are used
based on a type field. We were only able to identify this
pattern in one closed source enclave (Synaptics Fingerprint
Driver Enclave), which hinders a detailed analysis. However,
SGXFUZZ synthesized slightly different structures based
on the (manually confirmed) type field, which shows that
SGXFUZZ is able to handle this case. Since the layouts are tied
to the fuzzer’s input mutation scheduler, the generated layouts

can branch together with the payloads for different code paths.
Thus, union fields pose in no way a limitation of our approach.

Case Study: Output buffer in sgxwallet. The sgxwallet en-
clave challenged our structure synthesis using large, constantly
sized output buffers. While the synthesis worked perfectly on
most fields of the buffer, it missed creating the output buffer
to the structure with a size of 1024 bytes. The manual analysis
quickly revealed that the struct synthesis rejected some faults
with the difference of 0x400, which is larger than its tolerance.
Those were caused when the target accessed this buffer at the
end of the ECALL to write its output back to the normal world.
Since the sizes are hard-coded and no other access is made to
this buffer, the fuzzer could not generate the final struct layout
in this case. For this case manual confirmation is needed, i.e.,
manually adding this buffer to the seeds of the fuzzer.

6.4 Feature Evaluation
SGXFUZZ includes several mechanisms to improve the
code coverage and its ability to find enclave-specific bugs
(cf. Section 5). In the following, we first demonstrate the
effectiveness of the Struct Recovery, Size Field Detection,
and Size Field Havoc by evaluating the coverage gained
through the individual features using an ablation study on four
enclaves. Thereafter, we demonstrate the effectiveness of the
pointer location havoc by showing that it successfully detects
vulnerabilities due to memory location in several enclaves.

6.4.1 Ablation Study

We conduct our ablation study with four configurations, as
each feature depends on the previous one. First, we perform
a fuzzing run without our Struct Recovery. We only use our
fuzzing setup and enclave dumping to make the enclaves
fuzzable. Then, we provide the enclave a single linear input
buffer for each enclave’s ECALL. There are no pointers or
identified size fields in the input. Next, we sequentially enable
our features, the Struct Recovery, Size Field Detection, and Size
Field Havoc in the subsequent runs with a total of four different
fuzzing campaigns per evaluated enclave. We measure the
achieved code coverage (unique covered basic blocks) and
compare them between the four configurations. Since we are
comparing different fuzzing campaigns that are nondetermin-
istic, we use five redundant fuzzing runs to reduce noise.

Figure 5 shows three distinct result patterns across four
enclaves. The base case of Signal Secure Value Recovery,
where none of our fuzzing features are active, has a median
of 495 uniquely covered basic blocks. In contrast, activating
our Struct Recovery increases the covered basic blocks by
12 times to 5,942 on average. However, the Struct Recovery
measurement has a high variance ranging from 4,047 to 7,712
because size fields are not yet detected and random fuzzing
input is used in size fields. Using the Size Field Detection,
these size fields get detected but will have a fixed value from



Figure 5: Ablation Study showing the cumulative effect of the
different fuzzing features. (1) Flat Buffer, (2) Struct Recovery,
(3) Size Field Detection, and (4) Size Field Havoc.

the time of detection. This decreases the covered basic blocks,
as branches that depend on differently sized buffers are not
triggered. Lastly, the Size Field Havoc solves that problem
by mutating detected size values. This yields the highest of
all covered basics blocks (10,196) and reduces the variance
in the fuzzing process from 3,365 with Struct Recovery only
to 1,437 with Size Field Havoc.

Synaptics Fingerprint Driver Enclave shows essentially
the same pattern. Struct Recovery increases the covered basic
blocks by 6.1 times, but with a high variance of 900 basic
blocks between the lowest and highest run. Size Field Detec-
tion alone reduces the covered basic blocks, but in combination
with Size Field Havoc, it yields higher results on average. How-
ever, in the case of the Synaptics Fingerprint Driver Enclave,
the highest measurement of 1,631 basic blocks was done with
Struct Recovery only. This is to be expected with a sufficient
amount of repetitions, as has the chance to guess the size fields
lucky. Nonetheless, the ten times higher variance of Struct
Recovery compared to Size Field Havoc’s variance of 91 basic
blocks proves that the combination of all features provides
significantly more stable and reproducible fuzzing runs.

Signal Contact Discovery shows a different pattern. The
Struct Recovery still yields a major advantage over the base
case with a 2.6-fold increase of covered basic blocks. However,
the following configurations do not provide coverage gain
because only one ECALL uses a size field and—while the
Size Field Detection identifies it correctly—its usage depends
on global data, which SGXFUZZ currently cannot cover
(cf. Section 7).

Finally, the Gingytech Fingerprint Driver enclave shows the
third pattern, which consists of three steps, where the Struct
Recovery yields a 1.4-fold increase in covered basic blocks.
Then, the Size Field Detection increases the coverage again
by 1.4 to 4,297 basic blocks. However, the Size Field Havoc
only increases the coverage to 4,440 basic blocks, a 2.0-fold

increase compared to the base case. After reverse engineering
parts of the enclave’s code, we concluded that the enclave con-
tains several complex conditions. These complex conditions
considered several fields and from the payload, including size
fields, which a fuzzer has to guess correctly to flip the branch
condition. Since our Size Field Detection effectively removes
one of the fields from equations by fixing it to a buffer’s size,
the complexity that the fuzzer has to solve shrinks. Thus, it
becomes easier for the fuzzer to flip these branch conditions.

In conclusion, this ablation study shows that the features
of SGXFUZZ are able to tackle the blockers of the enclave
interface and yield in conjunction a consistently high coverage.

6.4.2 Pointer Location Havoc

We evaluate the pointer location havoc based on the number of
discovered vulnerabilities. In contrast to the aforementioned
structure recovery and size field features, it does not aim to
increase code coverage. Instead, it is a bug oracle to test if
enclaves accept attacker-controlled addresses within secure
memory (cf. Section 5.4).

The general insight is that most recent enclaves correctly use
the Intel SGX SDK’s wrapper to avoid these vulnerabilities.
Though, using this oracle, we found a total of 9 bugs related
to memory locations in 4 enclaves. These vulnerabilities are
caused by using [user_check] in the EDL files and then
insufficiently checking the pointers in the user code. In most
cases, this type of vulnerability could be easily fixed by using
the SGX SDK’s [in] and [out] flags that create secure
copies. However, these SDK features are only usable for flat
buffers and would not have been sufficient in the case of the
Gingytech Fingerprint Driver enclave, which had 3 of these
bugs. This enclave passes C++ objects that contain vtables and
pointers to other objects.

6.5 Scalability of SGXFUZZ vs. TEEREX

We compare SGXFUZZ in two key areas to TEEREX to eval-
uate the performance improvements offered by our approach.
First, we analyze the enclaves from Table 1 in TEEREX and
record the achieved code coverage and the number of results
that it generated. Second, we compare the number of reported
findings for both tools.

Coverage. The results in Table 3 show that, without exception,
SGXFUZZ achieves higher code coverage in every enclave.
The increase in code coverage can go as high as 29-times
or even 61-times the code coverage compares to TEEREX.
Regardless, the median factor of the coverage gain is 2.2.

This shows that SGXFUZZ achieves higher code coverage
in all cases. Assuming that our broad spectrum of enclaves
includes a wide spectrum of code complexities, this shows
that SGXFUZZ scales to a higher code coverage on varying
code path complexity.



Number of Reports. Further, Table 3 shows the number of
reported bug candidates. TEEREX discovered candidates for
17 enclaves, however, 13 of these enclaves have more than 200
reports, which is a large number for a human analyst to analyze
manually. Moreover, 8 enclaves have over 1,000 reports,
which can hardly be fully analyzed by a human. SGXFUZZ,
in comparison, found bugs in 14 enclaves, of which only one
is above 200 reports. This enclave, the Gingytech Fingerprint
Driver is exceptionally insecure because it does not sanitize
the input and uses values from the fuzzing payload directly
as call and jmp addresses. In comparison, TEEREX reports
a total of 16,624 findings for the same enclave, about 70 times
as much. On average of all tested enclaves, TEEREX produces
more candidates than SGXFUZZ by a factor of 302, which
makes the number of reports from TEEREX hardly analyzable
by a human. In contrast, SGXFUZZ’ number of reports are
always within range of human capabilities.

Additionally, since SGXFUZZ does not produce false
positives, all reports are caused by real bugs (cf. Section 6.1).
Contrasting, TEEREX produces a large number of reports
that contain false positives due to limitations of symbolic
executions (cf. Section 3.2). This again increases the effort to
find actual bugs among reports. As evidenced by the drastically
reduced number of findings and increased number of validated
bugs, SGXFUZZ improves the scalability of human analysis.

6.6 Coverage

The coverage achieved by a fuzzer and the maximum achiev-
able coverage are crucial metrics. However, there are multiple
challenges that make it infeasible to determine the amount
of reachable code in an enclave, which we will elaborate on
in this section. Effectively, we lack ground truth for a fair
quantitative analysis.

There are different approaches to approximate the amount
of reachable code. First, we could assume that all code within
an enclave is reachable. The problem with this approach is that
all libraries are linked statically because dynamically linking
(system) libraries is not possible in SGX. This includes large
but varying amounts of dead code into the enclave binary.
For example, in sgxwallet, memcpy has a total of 1,117 basic
blocks, of which we covered 184. This version of memcpy uses
unrolled loops for specific alignments and selects different
instruction set extensions based on processor features to
enhance performance. Since our fuzzer naturally cannot cover
the branches for two different instruction sets on one platform,
this creates dead code that is not easily identifiable. In contrast,
to sgxwallet, MobileCoin uses another version of memcpywith
21 basic blocks and Signal Secure Value Recovery’s memcpy
only has a single basic block that uses rep movsb. A similar
problem effects other libraries. For example, in sgxwallet,
functions from the C++ standard library accumulate a total of
4,457 basic blocks, of which we covered 69. A static analysis

shows that at most 212 blocks may be reached through any
ECALL indicating significant amounts of dead code.

Second, we could exclude all libraries and favor the remain-
ing application code. On the one hand, identifying library
code is not an easy task by itself because library code is often
inlined and not clearly distinguishable in the binaries. On the
other hand, the primary logic of an enclave may be contained
within a library and therefore should not be excluded, like an
enclave that wraps an SSL or crypto library. Thus, in addition
to the trusted standard library and STL, there are other libraries
such as a Rust trusted standard library and mbedTLS that
contribute to the total number of unreachable code blocks with
an unknown amount. We have no means of determining how
much code of these libraries is actually used or essential in the
enclaves’ logic.

In addition, we cannot use solutions like gcov [75] to de-
termine code coverage in open-source scenarios. For similar
reasons, the measurements of gcov are unreliable because is
would exclude pre-compiled libraries and include dead source
code (e.g., code for specific CPU features or runtime config-
urations). In practical terms, including gcov in the compiler
setup for SGX requires a considerable amount of engineering
because it relies on the system’s standard library for file system
operations. However, enclaves have to exclude system libraries
and Intel’s trusted libc for SGX does not provide file system op-
erations. As such, gcov is not compatible with the trusted libc.

Considering the aforementioned reasons, we can only
count the total number of basic blocks in the enclave binary.
However, this number does not represent in any scenario the
reachable code. Hence, the coverage ratios should be taken
with care. Note that we do not implement new payload muta-
tors for SGXFUZZ, but contribute to the fundamental fuzzing
capabilities of SGX enclaves and ensure that existing greybox
fuzzing techniques can be applied. Hence, the mutation-
specific aspects and a detailed coverage analysis that evaluates
the underlying fuzzers, kAFL, RedQueen, and radamsa, are
presented in the respective papers [3, 39, 67]. The evaluation
of the fuzzing capability of SGX enclaves in Section 6.3 shows
that the input structure synthesis works as expected.

We include our achieved code coverage, as well as the total
amount of basic blocks in the enclave binaries in Table 3.

7 Discussion and Future Work

Analyzing OCALLs. In this work, we focus on the execution
of ECALLs which are the primary means and only entry point
of an enclave and thus, must enforce the security requirements
of the trusted execution environment. However, ECALLs
may exit early for an OCALL to be resumed later. Since our
prototype implementation SGXFUZZ does not resume after
OCALLs, this can lead to missed coverage. However, we
found that this limitation is tolerable, as we found only two
enclaves that we could not fuzz effectively due to a lack of
OCALL support and many enclaves use no OCALLs at all.



Enclave
Total
#BBs

TEEREX
#BBs

TEEREX
Reports

SGXFUZZ
#BBs

SGXFUZZ
Reports

SGXFUZZ
Verified Bugs

SGXFUZZ #BB
TEEREX #BB

BiORAM-SGX 48865 788 1.6 % 2831 1802 3.7 % 0 0 2.29
ELAN Fingerprint Driver 33969 666 2.0 % 0 675 2.0 % 0 0 1.01
ELAN Fingerprint Biometric SSL 37739 1408 3.7 % 22037 2206 5.8 % 67 14 1.57
Gingytech Fingerprint Driver 47913 2275 4.7 % 16624 4080 8.5 % 236 16 1.79
Goodix Fingerprint Driver Coating Enclave 20800 942 4.5 % 884 1698 8.2 % 11 6 1.80
Goodix Fingerprint Driver Glass Enclave 32672 942 2.9 % 1328 1736 5.3 % 10 8 1.84
Goodix Fingerprint Driver WBDI Enclave 21169 655 3.1 % 1 1404 6.6 % 56 14 2.14
Intel AE Launch Enclave (LE) 13270 149 1.1 % 0 429 3.2 % 0 0 2.88
Intel AE Provisioning Cert. Enc. (PCE) 18438 208 1.1 % 0 490 2.7 % 0 0 2.36
Intel AE Provisioning Enclave (PVE) 32368 190 0.6 % 0 452 1.4 % 0 0 2.38
Intel AE Quoting Enclave (QE) 32012 180 0.6 % 0 407 1.3 % 0 0 2.26
Intel SDK Initialize ECALL – not supported 257 – 0 0 –
KubeTEE TFF 92595 429 0.5 % 903 3320 3.6 % 0 0 7.74
Ledger BOLOS 35100 431 1.2 % 412 1076 3.1 % 0 0 2.50
lockbox 62176 2387 3.8 % 7406 3689 5.9 % 42 2 1.55
MobileCoin 42203 669 1.6 % 0 11888 28.2 % 0 0 17.77
Occlum Runtime Libos 61575 433 0.7 % 247 977 1.6 % 0 0 2.26
OMEC Project’s C3P0 – Dealer 27478 220 0.8 % 1084 226 0.8 % 1 1 1.03
OMEC Project’s C3P0 – KMS 26169 483 1.8 % 93 1673 6.4 % 1 1 3.46
Plinius 17188 489 2.8 % 412 646 3.8 % 2 2 1.32
SGX Darknet 9944 300 3.0 % 491 527 5.3 % 4 3 1.76
sgxwallet 25528 3274 12.8 % 4303 3865 15.1 % 5 2 1.18
Signal Contact Discovery 2299 236 10.3 % 0 560 24.4 % 0 0 2.37
Signal Secure Value Recovery 36675 225 0.6 % 0 11989 32.7 % 0 0 53.28
STANlite 30688 2279 7.4 % 0 6621 21.6 % 5 4 2.91
Synaptics Fingerprint Driver Enclave 51878 114 0.2 % 0 1416 2.7 % 4 1 12.42
Tensorflow Lite 14631 244 1.7 % 0 492 3.4 % 0 0 2.02
Town Crier 41798 3755 9.0 % 6568 4748 11.4 % 14 1 1.26
TresorSGX 4859 283 5.8 % 1 622 12.8 % 0 0 2.20
WolfSSL 19167 345 1.8 % 2 714 3.7 % 0 0 2.07

Table 3: Result comparison of SGXFUZZ and TEEREX. The median factor of the coverage increase is 2.20 (mean: 4.88).

In addition to providing no advantages to most enclaves,
universal OCALL support for SGXFUZZ is not trivial and
effectively requires call chain support. While our runner is
capable of executing OCALLs, the return values of OCALLs
are under malicious control and the semantics are unknown
to the runner. Therefore, OCALL support is equivalent to
support a call chain consisting of the main ECALL followed
by multiple calls to the SDK’s special OCALL-return ECALL.
This requires the fuzzer to generate multiple dependent input
payloads for the ECALL and the following OCALLs. Further,
each OCALL requires its own custom input structure layout.
Since we have few examples of missing OCALLs being
problematic, we leave this topic as future work.

Dynamic ECALL Chains. Since enclaves are stateful,
calling ECALLs subsequently in a particular order can en-
hance coverage and reach more complex program states than
each ECALL individually. The most common pattern is an
Initialization ECALLs that must be called prior to any other
ECALL to set up the internal state. We solve this using a static
ECALL during the fuzzing setup (Section 5.4). However,
fully dynamic call chain support poses similar challenges as
OCALL support and requires the fuzzer to generate multiple
dependent input payloads and synthesize multiple layouts. On
top of that, dynamic call chains require sophisticated selection
of the calls to chain. For OCALLs the call chain is determined

by the originating ECALL and dependency is implicitly given.
ECALL-chains have no natural order, so a naive fuzzing
approach for chains is likely to waste time on chains of inde-
pendent ECALLs that can never produce additional coverage.

Fuzzing Other Enclave ABIs. During this work, we limit
our approach to SGX and the corresponding Intel SGX
SDK. However, there are other enclave ABIs such as Google
Asylo [35], Graphene [76], or the Fortanix Rust SDK [30].
SGXFUZZ is conceptually not tied to any enclave ABI and
fuzzing another ABI should be as simple as tweaking the
runner to set up a different enclave environment to conform
with another calling convention. The structure synthesis only
requires default memory accesses that emit SEGV signals.
Further, none of the SGX specific fuzzer extension discussed
in Section 5.4 is conceptually tied to SGX but rather to the
concept of enclaves in general. The pointer location havoc and
the corresponding bug oracle apply to any trusted execution
environment (TEE), where the enclave and the user-space
have dedicated regions in a shared address space.

8 Related Work

SGX and TEE vulnerabilities. Recent work on the security
of SGX exposed a series of side-channel attacks [12, 13, 41,
61, 70] that may leak secret data due to hardware flaws. While



these attacks can be prevented globally using special compiler
options or using updated CPU generations, vulnerabilities
of individual enclaves need to be addressed by the vendor.
As such, an analysis of individual enclaves is still required
because these vulnerabilities cannot be prevented by updating
the SGX environment.

Fuzzing. Fuzzing [10, 11, 55] is a popular technique to assess
the security of software and hardware components [27, 59, 63]
and to find impactful vulnerabilities. There has been significant
interest to enable fuzzing for even more platforms and targets
to integrate automated security testing. Grammar-based input
fuzzers [6, 33, 49, 80, 83] infer invariants in well-structured
data types to produce impactful test cases for complex targets.
These fuzzers operate on linear input and cannot handle nested
pointers. Protocol fuzzers [5, 18, 24, 31] generate a sequence
of messages (or function calls) to emulate the interaction
between two parties. They analyze data dependencies of the
message in sequence to generate useful test messages that
iteratively alter the internal state of the target and uncover
vulnerabilities. These fuzzers tackle the challenges to detect
the types of message data, or to infer the internal state of
a remote target to guide the fuzzing process to uncovered
states. However, data is sent to a well-defined endpoint (e.g.,
network or syscall) so that pointer detection is not required.
Further, these fuzzers often rely on the generation of binary
data structures based on source code: Difuze [19] uses kernel
driver source files to generate data structure to fuzz these
drivers. syzkaller [37] uses a grammar made from Linux
header files to generate sequences of syscalls to uncover bugs
in the Linux kernel. SyzGen [15] improves on syzkaller and
automatically generates syscall specifications for macOS
drivers. Morphuzz [60] leverages the MMIO address mapping
in the hypervisor to generate sequences of I/O commands
for virtual device drivers. FuzzGen [46] analyzes the source
code of libraries and host applications to infer data structures.
In contrast, our approach can infer nested structure layouts
on-the-fly for closed-source binaries during the fuzzing run.

The HFL fuzzer [51] symbolically tracks the interactions
between kernel and user-space memory to recover data
structures. While there are similarities to SGX’ memory
model, the trusted world in SGX can access any host-memory
directly, contrary to the kernel which uses special access
functions, which HFL relies on. As such, adapting HFL’s
approach to SGX requires analyzing all pointer dereferences,
not only those in access functions. This requires more intensive
tracking and leads to the state explosion issues as discussed in
Section 3. Most importantly, none of the existing approaches
were suitable for fuzzing SGX as they require source code or
rely on assumptions that do not hold for the SGX environment.

Emulation and SGX. Emulated environments for SGX have
not yet been in the focus of research. PartEMU [38] is an em-
ulator for ARM TrustZone that enables fuzzing of TrustZone
enclave. On the other hand, there are various approaches to

emulate normal environments inside SGX enclaves [1, 7, 21,
71, 76]. Further, Intel has published KVM SGX [43] which
is used to pass-through real SGX hardware enclaves to a guest
system and cannot be used to emulate SGX and should not be
confused with our approach of SGX emulation.

9 Conclusion and Summary

In this paper we present SGXFUZZ, a novel approach to
synthesize binary input structures with nested pointers that
enables coverage-guided fuzzing of SGX enclaves without
prior knowledge of the ECALL’s semantics. To retrieve
coverage feedback from otherwise not introspectable enclaves,
we present enclave extraction methods and an enclave runner
for user-space execution of enclaves at native speed.

We evaluate our approach and show that our structure
synthesis offers a robust method to generate input layouts
on-the-fly during a fuzzing process. In addition, we show that
SGXFUZZ outperforms TEEREX in terms of covered code,
detected bugs, and human analysis effort.
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